## Appendix A Matlab Control Toolbox Functions

```
Purpose Bode frequency response of LTI systems
Syntax bode(sys)
bode(sys.w)
bode(sys1,sys2,\ldots..sysN)
bode(sys1,sys2,\ldots.,sysN,w)
bode(sys1,'PlotStyle1'....,sysN. 'PlotStyleN')
[mag,phase,w] = bode(sys)
```

bode computes the magnitude and phase of the frequency response of LTI systems. When invoked without left-hand arguments, bode produces a Bode plot on the screen. Bode plots are used to analyze system properties such as the gain margin, phase margin, DC gain, bandwidth, disturbance rejection, and stability.
bode (sys) plots the Bode response of an arbitrary LTI model sys. This model can be continuous or discrete, and SISO or MIMO. In the MIMO case, bode produces an array of Bode plots, each plot showing the Bode response of one particular I/O channel. The frequency range is determined automatically based on the system poles and zeros.
bode (sys ,w) explicitly specifies the frequency range or frequency points to be used for the plot. To focus on a particular frequency interval [wmin, wmax], set $w=\{w m i n, w m a x\}$. To use particular frequency points, set $w$ to the vector of desired frequencies. Use logspace to generate logarithmically spaced frequency vectors. All frequencies should be specified in radians/sec.
bode(sys1,sys2, ...,sysN) or bode(sys1,sys2, ...,sysN, w) plots the Bode responses of several LTI models on a single figure. All systems must have the same number of inputs and outputs, but may otherwise be a mix of continuous and discrete systems. This syntax is useful to compare the Bode responses of multiple systems.
bode(sys1, 'PlotStyle1',...,sysN, 'PlotStyleN') further specifies which color, linestyle, and/or marker should be used to plot each system. For example,

[^0]uses red dashed lines for the first system sys1 and green ' $x$ ' markers for the second system sys2.

When invoked with left-hand arguments,

```
[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)
```

return the magnitude and phase (in degrees) of the frequency response at the frequencies w (in rad/sec.). The outputs mag and phase are 3-D arrays with the frequency as the last dimension (see "Arguments" below for details). You can convert the magnitude to decibels by

$$
\operatorname{magdb}=20 * \log 10(\mathrm{mag})
$$

## Arguments

The output arguments mag and phase are 3-D arrays with dimensions

$$
\text { (number of outputs }) \times(\text { number of inputs }) \times(\text { length of } w)
$$

For SISO systems, mag ( $1,1, k$ ) and phase ( $1,1, k$ ) give the magnitude and phase of the response at the frequency $\omega_{k}=\mathrm{w}(\mathrm{k})$ :

$$
\begin{aligned}
\operatorname{mag}(1,1, \mathrm{k}) & =\left|h\left(j \omega_{k}\right)\right| \\
\text { phase }(1,1, \mathrm{k}) & =\angle h\left(j \omega_{k}\right)
\end{aligned}
$$

MIMO systems are treated as arrays of SISO systems and the magnitudes and phases are computed for each SISO entry $h_{i j}$ independently ( $h_{i j}$ is the transfer function from input $j$ to output $i$ ). The values mag ( $i, j, k$ ) and phase ( $i, j, k$ ) then characterize the response of $h_{i j}$ at the frequency $w(\mathrm{k})$ :

$$
\begin{aligned}
\operatorname{mag}(\mathrm{i}, \mathrm{j}, \mathrm{k}) & =\left|h_{i j}\left(j \omega_{k}\right)\right| \\
\operatorname{phase}(\mathrm{i}, \mathrm{j}, \mathrm{k}) & =\angle h_{i j}\left(j \omega_{k}\right)
\end{aligned}
$$

Example You can plot the Bode response of the continuous SISO system

$$
H(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

by
$\geqslant \mathrm{g}=\mathrm{tf}\left(\left[\begin{array}{lll}1 & 0.1 & 7.5\end{array}\right],\left[\begin{array}{llll}1 & 0.12 & 9 & 0\end{array}\right]\right)$ ) ;
» bode (g)


To plot the response on a wider frequency range, e.g., from 0.1 to $100 \mathrm{rad} / \mathrm{sec}$., type
» bode (g, \{0.1, 100\})

## bode

You can also discretize this system using zero-order hold and the sample time $T_{s}=0.5$ second, and compare the continuous and discretized responses by:

》 $\mathrm{gd}=\mathrm{c} 2 \mathrm{~d}(\mathrm{~g}, 0.5)$
» bode (g, 'r', gd, 'b--')

Bode Diagrams


Algorithm For continuous-time systems, bode computes the frequency response by evaluating the transfer function $H(s)$ on the imaginary axis $s=j \omega$. Only positive frequencies $\omega$ are considered. For state-space models, the frequency response is

$$
D+C(j \omega-A)^{-1} B, \quad \omega \geq 0
$$

When numerically safe, $A$ is diagonalized for maximum speed. Otherwise, $A$ is reduced to upper Hessenberg form and the linear equation $(j \omega-A) X=B$ is solved at each frequency point, taking advantage of the Hessenberg struc-
ture. The reduction to Hessenberg form provides a good compromise between efficiency and reliability. See [1] for more details on this technique.

For discrete-time systems, the frequency response is obtained by evaluating the transfer function $H(z)$ on the unit circle. To facilitate interpretation, the upper-half of the unit circle is parametrized as:

$$
z=e^{j \omega T_{s}}, \quad 0 \leq \omega \leq \omega_{N}=\frac{\pi}{T_{s}}
$$

where $T_{s}$ is the sample time and $\omega_{N}$ is called the Nyquist frequency. The equivalent "continuous-time frequency" $\omega$ is then used as the $x$-axis variable. Because $H\left(e^{j \omega T_{s}}\right)$ is periodic with period $2 \omega_{N}$, bode plots the response only up to the Nyquist frequency $\omega_{N}$. If the sample time is unspecified, the default value $T_{s}=1$ is assumed.

## Diagnostics

See Also

References

If the system has a pole on the $j \omega$ axis (or unit circle in the discrete case) and w happens to contain this frequency point, the gain is infinite, $j \omega I-A$ is singular, and bode produces the warning message:

Singularity in freq. response due to $\mathrm{j} w$-axis or unit circle pole.

| 1tiview | LTI system viewer |
| :--- | :--- |
| nyquist | Nyquist plot |
| nichols | Nichols plot |
| sigma | Singular value plot |
| freqresp | Frequency response computation |
| evalfr | Response at single complex frequency |

[1] Laub, A.J., "Efficient Multivariable Frequency Response Computations," IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

## Purpose

Feedback connection of two LTI models

## Syntax

sys $=$ feedback(sys1,sys2)
sys $=$ feedback(sys1,sys2,sign)
sys $=$ feedback(sys1,sys2,feedin,feedout,sign)
Description
sys $=$ feedback (sys1, sys2) returns an LTI model sys for the negative feed- back interconnection


The closed-loop model sys has $u$ as the input vector and $y$ as the output vector. The LTI models sys 1 and sys2 must be both continuous or both discrete with identical sample times. Precedence rules are used to determine the resulting model type (see p. 2-3).

To apply positive feedback, use the syntax
sys $=$ feedback (sys 1, sys $2,+1$ )
By default, feedback (sys1, sys2) assumes negative feedback and is equivalent to feedback (sys1,sys2,-1).

Finally,

```
sys = feedback(sys1,sys2,feedin,feedout)
```

computes a closed-loop model sys for the more general feedback loop:


The vector feedin contains indices into the input vector of sys 1 and specifies which inputs $u$ are involved in the feedback loop. Similarly, feedout specifies which outputs $y$ of sys 1 are used for feedback. The resulting LTI model sys has the same inputs and outputs as sys 1 (with their order preserved). As before, negative feedback is applied by default and you must use

```
sys = feedback(sys1,sys2,feedin,feedout,+1)
```

to apply positive feedback.
For more complicated feedback structures, use append and connect.
You can specify static gains as regular matrices, for example,

```
sys = feedback(sys1,2)
```

However, at least one of the two arguments sys 1 and sys2 should be an LTI object. For feedback loops involving two static gains k 1 and k2, use the syntax sys $=f$ eedback (tf(k1), k2)

# feedback 

## Examples Example 1



To connect the plant

$$
G(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}
$$

with the controller

$$
H(s)=\frac{5(s+2)}{s+10}
$$

using negative feedback, type

```
#G = tf([\begin{array}{lll}{2}&{5}&{1}\end{array}],[\begin{array}{lll}{1}&{2}&{3}\end{array}],'inputname', 'torque' , ...
# H = zpk (-2,-10,5)
> Cloop = feedback(G,H)
Zero/pole/gain from input "torque" to output "velocity":
0.18182 (s+10) (s+2.281) (s+0.2192)
-------------------------------------
    (s+3.419) (s^2 + 1.763s +1.064)
```

The result is a zero-pole-gain model as expected from the precedence rules. Note that Cloop inherited the input and output names from $G$.

## Example 2

Consider a state-space plant P with five inputs and four outputs and a state-space feedback controller K with two inputs and three outputs. To connect outputs 1,3 , and 4 of the plant to the controller inputs, and the controller outputs to inputs 4 and 2 of the plant, use

```
feedin = [4 2];
feedout = [llll}1034]
Cloop = feedback(P,K,feedin,feedout)
```


## Example 3

You can form the following negative-feedback loops

by

$$
\begin{array}{ll}
\text { Cloop }=\text { feedback }(G, 1) & \text { \% left diagram } \\
\text { Cloop }=\text { feedback }(1, G) & \text { \% right diagram }
\end{array}
$$

## Limitations

See Also

The feedback connection should be free of algebraic loop. If $D_{1}$ and $D_{2}$ are the feedthrough matrices of sys 1 and sys2, this condition is equivalent to:

- $I+D_{1} D_{2}$ nonsingular when using negative feedback
- $I-D_{1} D_{2}$ nonsingular when using positive feedback
star series parallel connect
append

Star product of LTI systems (LFT connection)
Series connection
Parallel connection
Derive state-space model for block diagram interconnection
Append LTI systems

Purpose Parallel connection of two LTI models.
Syntax
sys = parallel(sys1,sys2)
sys $=$ paralle1 (sys1,sys2,inp1,inp2,out1,out2)

## Description

parallel connects two LTI models in parallel. This function accepts any type of LTI model. The two systems must be either both continuous or both discrete with identical sample time. Static gains are neutral and can be specified as regular matrices.
sys = parallel (sys1,sys2) forms the basic parallel connection shown below.


This command is equivalent to the direct addition
sys $=$ sys1 + sys 2
(see page 28 for details on LTI system addition).
sys $=$ paralle1 (sys1,sys2,inp1,inp2,out1,out2) forms the more general parallel connection:


The index vectors inp1 and inp2 specify which inputs $u_{1}$ of sys 1 and which inputs $u_{2}$ of sys2 are connected. Similarly, the index vectors out1 and out2 specify which outputs $y_{1}$ of sys1 and which outputs $y_{2}$ of sys2 are summed. The resulting model sys has $\left[V_{1} ; u ; v_{2}\right]$ as inputs and $\left[z_{1} ; y ; z_{2}\right]$ as outputs.

Example
See Also

See page 55 in "Design Case Studies" for an example.

| append | Append LTI systems |
| :--- | :--- |
| series | Series connection |
| feedback | Feedback connection |


| Purpose | Series connection of two LTI models. |
| :--- | :--- |
| Syntax | sys $=$ series (sys1, sys2) <br> sys $=$ series (sys1 ,sys2,outputs1, inputs2) |

Description
series connects two LTI models in series. This function accepts any type of LTI model. The two systems must be either both continuous or both discrete with identical sample time. Static gains are neutral and can be specified as regular matrices.
sys $=$ series (sys1,sys2) forms the basic series connection shown below.


This command is equivalent to the direct multiplication

$$
\text { sys }=\text { sys2 }{ }^{*} \text { sys1 }
$$

(see page 2-29 for details on LTI system multiplication).
sys $=$ series (sys1,sys2, outputs1,inputs2) forms the more general series connection:


## series

The index vectors outputs1 and inputs2 indicate which outputs $y_{1}$ of sys1 and which inputs $u_{2}$ of sys2 ought to be connected. The resulting model sys has $u$ as input and $y$ as output.

## Example

Consider a state-space system sys 1 with five inputs and four outputs and another system sys2 with two inputs and three outputs. Connect the two systems in series by connecting outputs 2 and 4 of sys 1 with inputs 1 and 2 of sys2:

```
outputs1 = [2 4];
inputs2 = [1 2];
sys = series(sys1,sys2,outputs2,inputs1)
```


## See Also

append
parallel
feedback

Append LTI systems
Parallel connection
Feedback connection

## ET438a

## Matlab Bode Function Help

BODE Bode frequency response of LTI systems.
BODE(SYS) draws the Bode plot of the LTI system SYS. The frequency range and number of points are chosen automatically.

BODE(SYS, \{WMIN,WMAX\}) draws the Bode plot for frequencies between WMIN and WMAX (in radian/second).

BODE(SYS,W) uses the user-supplied vector $W$ of frequencies, in radian/second, at which the Bode response is to be evaluated. See LOGSPACE to generate logarithmically spaced frequency vectors.

BODE(SYS1,SYS2,...W) plots the Bode response of multiple LTI systems SYS1,SYS2,... on a single plot. The frequency vector $W$ is optional. You can also specify a color, line style, and marker for each system, as in bode(sys1,'r',sys2,'y--',sys3,'gx').

When invoked with left-hand arguments,
[MAG,PHASE,W] = BODE (SYS, ...)
returns the frequency vector W and arrays MAG and PHASE of magnitudes (in dB) and phases (in degrees). No plot is drawn on the screen. If SYS has NU inputs and NY outputs and LW=length(W), MAG and PHASE are NY-by-NU-by-LW arrays and the response at the frequency $W(k)$ is given by $\operatorname{MAG}(:,, i, k)$ and PHASE(:,,,k).

For discrete systems with sample time Ts, BODE uses the transformation $Z=\exp \left(j^{*} W^{*} T s\right)$ to map the unit circle to the real frequency axis. The frequency response is only plotted for frequencies smaller than the Nyquist frequency pi/Ts, and the default value 1 (second) is assumed when Ts is unspecified.

See also NICHOLS, NYQUIST, SIGMA, FREQRESP, LTIVIEW.


[^0]:    bode(sys1, 'r--',sys2, 'gx')

